Why SpaceX suits look so sleek, and NASA’s look so clunky

When Jared Isaacman popped out of the hatch of the Dragon spaceship Resilience and into the vacuum of space, he really looked pretty spiffy. For the first time in history, a private citizen got (partly) out of a spaceship with nothing between him and our Pale Blue Dot but a sleek, tightly fitting white spacesuit. It wasn’t a space walk—like the one Alexei Leonov took on March 18, 1965, the first-ever by a human—as much as a ”lean out and peek,” but he looked like a guy from a sci-fi movie nonetheless. [Image: SpaceX] Everyone who saw it probably thought the same: That suit looks nothing like the ones NASA astronauts use when venturing out of the International Space Station. The SpaceX Extra-Vehicular Activity (EVA) space overalls looks like the future. NASA’s Extravehicular Mobility Unit (EMU) feels old and outdated—like an oversize relic from the 1980s. Alexei Leonov, 1965 [Photo: Central Press/Getty Images] But don’t be blinded by the imperial stormtrooper bling. There are plenty of reasons why their designs look so different. While the EMU is currently more rugged and dependable than Elon Musk’s stark white space undies, that doesn’t mean the SpaceX version is bad. Each suit has its use, and SpaceX’s is a great first version that will evolve to keep humans safe on journeys beyond the confines of the Dragon Crew’s hatch. [Image: SpaceX] What’s different The difference between SpaceX’s EVA suit and NASA’s EMU isn’t so much about aesthetic choices as it is the result of their respective functions, features, and history. At their core, each suit was engineered for different purposes. Also, both suits are at different stages of development, with the EMU being the result of decades of experience and refinements, with very specific mission requirements in mind. On the other hand, the sleekness of SpaceX’s EVA suit is the result of being designed for short exposures to the rigors of space. You can find a parallel in the suits designed by NASA for the Gemini missions in the 1960s. They looked much sleeker than the suits used for Apollo, which required longer stays, where astronauts would be exposed to radiation and extreme changes in temperature. (Personally, I find the Mercury suit worn by John Glenn to be the best-looking space suit of all.) Astronaut Edward White during the first American EVA performed during Gemini 4 flight, 1965 [Photo: NASA] The basic thing to remember is that NASA’s EMU is built for long-duration space walks, where astronauts are doing heavy-duty work. It has been used by astronauts on the International Space Station for years and was designed to withstand the demands of work sessions in space that can last up to eight hours or longer. It gives complete freedom of movement without any other link to the space station beyond a safety tether. A crew member in a mock-up of the Space Shuttle Extravehicular Mobility Unit (EMU) and Manned Maneuvering Unit (MMU), the NASA astronaut propulsion unit, August 17, 1979 [Photo: Space Frontiers/Getty Images] The EMU is bulky because it needs to be bulky. The heft reflects the need for extended life support, a comprehensive protection system, and multiple layers of insulation. Safety is the priority, and every element of the EMU was engineered with long-term survival in mind under extreme conditions. It’s like having a personal spaceship all around you. SpaceX’s EVA suit, however, is built for shorter times in the vacuum of space. The first version’s sleek, modern design is optimized for space tourism, prioritizing comfort, mobility, and accessibility—it doesn’t require the bells and whistles of the EMU. [Image: NASA] Space suit fabrics The EMU’s outermost skin is called Ortho-Fabric, which combines Kevlar, Nomex, and Gore-Tex. These materials are not only protective, but incredibly durable. Kevlar is used in bulletproof vests; it’s there to make sure the astronaut doesn’t get punctured by micrometeoroids or space debris. Nomex is a flame-resistant material, which may seem odd in space, but it’s vital in case the suit encounters superheated objects or malfunctions that create fire hazards. And Gore-Tex helps the suit to breathe, allowing moisture from the astronaut’s body to escape while blocking any external liquids​. In total, the EMU uses 14 layers of material. Astronaut David A. Wolf, ca. 2002 [Photo: NASA] The NASA suit has another layer under it that looks like white pajamas: the Liquid Cooling and Ventilation Garment (LCVG). This full-body clothing has tubes to circulate water around an astronaut’s body, which keeps them from overheating during long space walks. Under direct sunlight, the ISS reaches up to 250 degrees Fahrenheit, going down to minus-250 degrees Fahrenheit in the dark. The LCVG has been an essential part of NASA’s suit design for years, and remains one of the most reliable ways to regulate body temperature in space. The suit also contains power heaters in the glove so astronau

Why SpaceX suits look so sleek, and NASA’s look so clunky
When Jared Isaacman popped out of the hatch of the Dragon spaceship Resilience and into the vacuum of space, he really looked pretty spiffy. For the first time in history, a private citizen got (partly) out of a spaceship with nothing between him and our Pale Blue Dot but a sleek, tightly fitting white spacesuit. It wasn’t a space walk—like the one Alexei Leonov took on March 18, 1965, the first-ever by a human—as much as a ”lean out and peek,” but he looked like a guy from a sci-fi movie nonetheless. [Image: SpaceX] Everyone who saw it probably thought the same: That suit looks nothing like the ones NASA astronauts use when venturing out of the International Space Station. The SpaceX Extra-Vehicular Activity (EVA) space overalls looks like the future. NASA’s Extravehicular Mobility Unit (EMU) feels old and outdated—like an oversize relic from the 1980s. Alexei Leonov, 1965 [Photo: Central Press/Getty Images] But don’t be blinded by the imperial stormtrooper bling. There are plenty of reasons why their designs look so different. While the EMU is currently more rugged and dependable than Elon Musk’s stark white space undies, that doesn’t mean the SpaceX version is bad. Each suit has its use, and SpaceX’s is a great first version that will evolve to keep humans safe on journeys beyond the confines of the Dragon Crew’s hatch. [Image: SpaceX] What’s different The difference between SpaceX’s EVA suit and NASA’s EMU isn’t so much about aesthetic choices as it is the result of their respective functions, features, and history. At their core, each suit was engineered for different purposes. Also, both suits are at different stages of development, with the EMU being the result of decades of experience and refinements, with very specific mission requirements in mind. On the other hand, the sleekness of SpaceX’s EVA suit is the result of being designed for short exposures to the rigors of space. You can find a parallel in the suits designed by NASA for the Gemini missions in the 1960s. They looked much sleeker than the suits used for Apollo, which required longer stays, where astronauts would be exposed to radiation and extreme changes in temperature. (Personally, I find the Mercury suit worn by John Glenn to be the best-looking space suit of all.) Astronaut Edward White during the first American EVA performed during Gemini 4 flight, 1965 [Photo: NASA] The basic thing to remember is that NASA’s EMU is built for long-duration space walks, where astronauts are doing heavy-duty work. It has been used by astronauts on the International Space Station for years and was designed to withstand the demands of work sessions in space that can last up to eight hours or longer. It gives complete freedom of movement without any other link to the space station beyond a safety tether. A crew member in a mock-up of the Space Shuttle Extravehicular Mobility Unit (EMU) and Manned Maneuvering Unit (MMU), the NASA astronaut propulsion unit, August 17, 1979 [Photo: Space Frontiers/Getty Images] The EMU is bulky because it needs to be bulky. The heft reflects the need for extended life support, a comprehensive protection system, and multiple layers of insulation. Safety is the priority, and every element of the EMU was engineered with long-term survival in mind under extreme conditions. It’s like having a personal spaceship all around you. SpaceX’s EVA suit, however, is built for shorter times in the vacuum of space. The first version’s sleek, modern design is optimized for space tourism, prioritizing comfort, mobility, and accessibility—it doesn’t require the bells and whistles of the EMU. [Image: NASA] Space suit fabrics The EMU’s outermost skin is called Ortho-Fabric, which combines Kevlar, Nomex, and Gore-Tex. These materials are not only protective, but incredibly durable. Kevlar is used in bulletproof vests; it’s there to make sure the astronaut doesn’t get punctured by micrometeoroids or space debris. Nomex is a flame-resistant material, which may seem odd in space, but it’s vital in case the suit encounters superheated objects or malfunctions that create fire hazards. And Gore-Tex helps the suit to breathe, allowing moisture from the astronaut’s body to escape while blocking any external liquids​. In total, the EMU uses 14 layers of material. Astronaut David A. Wolf, ca. 2002 [Photo: NASA] The NASA suit has another layer under it that looks like white pajamas: the Liquid Cooling and Ventilation Garment (LCVG). This full-body clothing has tubes to circulate water around an astronaut’s body, which keeps them from overheating during long space walks. Under direct sunlight, the ISS reaches up to 250 degrees Fahrenheit, going down to minus-250 degrees Fahrenheit in the dark. The LCVG has been an essential part of NASA’s suit design for years, and remains one of the most reliable ways to regulate body temperature in space. The suit also contains power heaters in the glove so astronau